Matchmaking in Multi-attribute Auctions using a Genetic Algorithm and a Particle Swarm Approach
نویسندگان
چکیده
An electronic market platform usually requires buyers and sellers to exchange offers-to-buy and offers-to-sell. The goal of this exchange is to reach an agreement on the suitability of closing transactions between buyers and sellers. This paper investigates multi-attribute auctions, and in particular the matchmaking of multiple buyers and sellers based on five attributes. The proposed approaches are based on a Genetic Algorithm (GA) and a Particle Swarm Optimization (PSO) approach to match buyers with sellers based on five attributes as closely as possible. Our approaches are compared with an optimal assignment algorithm called the Munkres algorithm, as well as with a simple random approach. Measurements are performed to quantify the overall match score and the execution time. Both, the GA as well as the PSO approach show good performance, as even though not being optimal algorithms, they yield a high match score when matching the buyers with the sellers. Furthermore, both algorithms take less time to execute than the Munkres algorithm, and therefore, are very attractive for matchmaking in the electronic market place, especially in cases where large numbers of buyers and sellers need to be matched efficiently.
منابع مشابه
A Comparative Study of Multi-Attribute Continuous Double Auction Mechanisms
Auctions have been as a competitive method of buying and selling valuable or rare items for a long time. Single-sided auctions in which participants negotiate on a single attribute (e.g. price) are very popular. Double auctions and negotiation on multiple attributes create more advantages compared to single-sided and single-attribute auctions. Nonetheless, this adds the complexity of the auctio...
متن کاملLoad Frequency Control in Power Systems Using Improved Particle Swarm Optimization Algorithm
The purpose of load frequency control is to reduce transient oscillation frequencies than its nominal valueand achieve zero steady-state error for it.A common technique used in real applications is to use theproportional integral controller (PI). But this controller has a longer settling time and a lot of Extramutation in output response of system so it required that the parameters be adjusted ...
متن کاملUsing a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data
The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging is...
متن کاملModeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)
In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...
متن کاملProduction Planning Optimization Using Genetic Algorithm and Particle Swarm Optimization (Case Study: Soofi Tea Factory)
Production planning includes complex topics of production and operation management that according to expansion of decision-making methods, have been considerably developed. Nowadays, Managers use innovative approaches to solving problems of production planning. Given that the production plan is a type of prediction, models should be such that the slightest deviation from their reality. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012